Biologia Geral e Experimental # Universidade Federal de Sergipe São Cristóvão, SE 5 (2): 10-15 30.vii.2005 ANTINOCICEPTIVE ACTIVITY OF THE AQUEOUS EXTRACT OF BAUHINIA CHEILANTHA (BONG.) STEUD. (LEGUMINOSAE: CAESALPINIOIDEAE) Adriana M. O. Silva^l Flavia Teixeira-Silva^l Rogéria de Souza Nunes ^l Rosilene Moretti Marçal^l Sócrates Cabral de Holanda Cavalcanti^l Ângelo Roberto Antoniolli^l #### ABSTRACT Bauhinia cheilantha (Leguminosae: Caesalpinioideae) is a common plant of the Brasilian Caatinga widely used in folk medicine as an analgesic. In order to verify this effect pharmacologically, the antinociceptive activity of the plant was evaluated through the administration of its aqueous extract in mice. The extract was administered orally (400 mg/kg) 60 minutes before a writhing test, and was found to reduce nociception by 54.4%. The effects of formalin (1%) were also reduced by the extract at all doses. Naloxone (5 mg/kg, i.p.) and caffeine (10 mg/kg, i.p) reverted the effect of the extract. In a hot plate test, the extract (100mg, 200mg and 400 mg/kg) increased latency time by 39.8%, 30.7% and 32.8%, respectively. There was no acute toxicity in doses up to 3g/kg. The aqueous extract of the *B. cheilantha* bark revealed antinociceptive activity in all the models tested, effects that are possibly associated with the opioid and adenosine systems. Keywords: Bauhinia cheilanta, antinociceptive, aqueous extract. #### **RESUMO** Bauhinia cheilantha (Leguminosae-Caesalpinioideae) é uma planta comum da caatinga amplamente utilizada na medicina popular como analgésica. Para verificar farmacologicamente este efeito, a atividade antinociceptiva desta planta foi verificada através do extrato aquoso da entre-casca, administrado em camundongos. O extrato (400 mg/kg), administrado por via oral 60 minutos antes do teste reduziu a nocicepção em 54,4%. Os efeitos da formalina (1%) também foram reduzidos pelo extrato em todas as doses. Naloxona (5 mg/kg, i.p.) e cafeína (10 mg/kg, i.p) também reverteram este efeito. No teste da placa quente o extrato de *B. cheilantha* nas doses 100mg, 200mg e 400 mg/kg, aumentou o tempo de latência em 39.8%, 30.7% e 32.8%, respectivamente. Não houve toxicidade aguda até a dose de 3g/Kg. O extrato aquoso da entre-casca de *B. cheilantha* mostrou atividade antinociceptiva nos modelos testados, efeito possivelmente associado com os sistemas opióide e adenosina. Palavras-chave: Bauhinia cheilanta, antinociceptivo, extrato aquoso. ## INTRODUCTION Many plants of the Brasilian flora are used in local folk medicine, but very few have been pharmacologicaly validated. Among the unstudied majority is the legume *Bauhinia cheilantha* (Bong.) Steud., a small tree (average height 5 m), which is relatively common in the semi-arid Brasilian Caatinga. Known locally as *mororó*, the extract of its bark is used as an analgesic, but there are no pharmacological data on its properties. A variety of pharmacological properties have been reported for species of the genus *Bauhinia*. For example, the seeds of *Bauhinia monandra* affect haemagglutination positively, although this effect is eliminated by autoclaving (Abreu et al, 1990; Penate et Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Se, 49100-000. rosilenemoretti@ufs.br al, 1988), and the leaves of *Bauhinia tarapotensis* have antioxidant properties (Braca et al., 2001). Other species of the genus *Bauhinia* have been reported to have properties related to the treatment of malaria and hypoglycemia, and the regulation of thyroid hormones (Kittakoop et al., 2000; Lemus et al., 1999; Pepato et al., 2002; Panda & Kar, 1999). Several chemical compounds have been purified from different species of *Bauhinia*, including lectins, racemosol, and demethylracemosol. (Silva & Filho, 2002; Allen et al., 1980, Kittakoop et al., 2000). The medicinal uses of *B. cheilantha* have been reported in the ethnobotanical literature (eg. Andrade-Lima, 1988), but there have been no pharmacological studies of the analgeic properties of this plant, a lack of information which motivated the present study. #### MATERIAL AND METHODS **Plant material**: Bark of *B. cheilantha* was collected during the wet season in the village of Santa Rosa do Ermírio, Sergipe (09°45'S, 37°40'W). The species was identified by the biologist Gilvane V. Souza, and the voucher specimen (number 007490) is deposited at the herbarium of the Departamento de Biologia, Universidade Federal de Sergipe, Brasil. Preparation of aqueous extract (AE): The bark was dried at 40°C in a forced air oven (Marconi MA 037) for 48 h and triturated in a mill to obtain a powder. This powder was added to distilled water (1:5 w/v) at 75°C and infused for 30 min in order to constitute the aqueous extract. After infusion, the AE was filtered and freeze dried in a VirTis bench top freeze dryer, yielding a brown powder (8%), which was diluted and used in the pharmacological tests. For the experiments, the extract was reconstituted in water at three different concentrations – 100 mg/mL (AE100), 200 mg/mL (AE200) and 400 mg/mL (AE400), which were administered orally to the mice 60 minutes before each experiment. Animals: Male and female Swiss mice (20-35 g) were used as test animals. The animals were maintained in plastic cages, with food and water *ad libitum*, but were fasted for 12 hours prior to the oral administration of test substances. All experiments were performed in accordance with current guidelines for the care of laboratory animals and ethical guidelines for investigations of experimental pain in conscious animals. **Preparation of drugs:** Drugs used in the experiments were diluted to an injection volume of 0.1 mL/10g of animal weight, except when defined in the text. Acetic acid 0.6% (Merck), morphine hydrochloride (Sigma), formalin 1% (Baker), naloxone hydrochloride (Sigma), and caffeine (Sigma) were all diluted in water. Indomethacin (Sigma) was diluted in water/0.1 N NaOH (pH = 8). Indomethacin, morphine, naloxone and caffeine were injected 15 minutes before tests. **Acute toxicity**: Acute toxicity of the plant was verified in three groups of mice (n = 5/ne group (n = 5) received distilled water; the others received the aqueous extract in increasing doses (1, 2, and 3 g/kg; p.o.). The mortality was observed during 48 hours. #### Pharmacological tests Antinociceptive activity was verified using the writhing test induced by acetic acid 0.6% (Koster et al. 1959), the formalin 1% test (Dubuisson et al., 1977; Hunskaar, 1986) and the hot plate test (Eddy & Leimbach, 1953). Writhing test. Six groups of mice (n = 9) were tested. All animals received acetic acid 0.6% (0.1 mL/10g; i.p.), and AE100, AE200 and AE400 was administered p.o. to three groups 1 h before the nociceptive agent. One control group received distilled water instead of the aqueous extract. Morphine (2.5 mg/kg, i.p.) and indomethacin (10 mg/kg, i.p.) were used as standards in the remaining groups. Ten minutes after the acid was administrated, the number of writhes was recorded during a period of 20 min. Hot plate test: The experiment started 60 min (time zero) after p.o. administration of AE100, AE200 and AE400. The mice (n = 9) were placed on an aluminum plate heated to $55\pm0.5^{\circ}$ C and the time elapsed to the moment when they licked their hind paws was recorded (hereafter referred to as latency). This procedure was repeated at times 0, 15, 30 and 60 min. In order to avoid damage to the paws of the animals, time standing on the plate was limited to 30 seconds. Morphine (5 mg/kg, i.p.) was used as the reference drug. Formalin test: In a group of nine mice, AE100, AE200 and AE400 was administered p.o., and after 60 min., 0.02 mL of 1% formalin was administered to the subplantar of the left posterior paw. The time that each mouse spent licking its paw was recorded. Control animals received distilled water, p.o. Morphine was used as a standard test drug (7.5 mg/kg, i.p.). The reaction to pain was measured 0-5 min (1st phase) and 20-25 min (2nd phase) after administration of the stimulus. In order to confirm the possible participation of the opioid system, naloxone (5 mg/kg; i.p.) was administered with AE100 to a second group (n = 8). Morphine combined with naloxone (7.5 mg/kg, i.p. and 5 mg/kg; i.p., respectively) was administered to a third group 15 minutes prior to the injection of formalin. We also administered caffeine (10 mg/kg, i.p.) associated with AE100 to verify the influence of the adenosine system on the effect of the aqueous extract. Statistical analysis: Results of the hot plate test were analysed using two-factor parametric ANOVA, in which the variable was the latency and the two factors being simultaneously verified were the time interval of the four experiments and the drugs (extract and morphine dosage, and the control). The Tukey test for multiple comparisons of the means was applied to all F values with p<0.05. The results of the writhing and formalin tests were analysed using the Kruskal-Wallis non-parametric one-way ANOVA (samples do not come from normal population and the variances are heterogenous), with the Nemenyi test for multiple comparisons of the medians (Zar, 1996). Percentage inhibition = (1-Vt/Vc) x 100, where Vt and Vc represent the number of writhes or time spent licking the paw for the treated and control groups, respectively. The percentage increase in latency = (1-(Xc/Xt)x 100), where Xc and Xt are the average latency for control and treated groups, respectively. #### RESULTS AND DISCUSSION The aqueous extract of *B. cheilantha* reduced significantly the frequency of writhing induced by acetic acid (Kruskal-Wallis: F = 32.4; p<0.0005), with the number of events reduced by up to 54.4%, in comparison with the control, at 400 mg/kg (Nemenyi: q = 5.1; p<0.05, Table 1). Positive results for the writhing test do not necessarily means that the extract has an analgesic effect, however, as this test is sensitive not only to analgesics, but also to substances such as muscle relaxants, antihistamines, monoamine oxidase inhibitors, adrenergic blockers, and neuroleptics (Chernov *et al.*, 1967; Hendershot & Forsaith, 1959; Loux *et al.*, 1978; Pearl *et al.*, 1968). The formalin and hot plate tests were employed in order to confirm the analgesic properties of the extract. The hot plate model involves a supraspinal response to thermal stimuli. Drugs with supraspinal action affect this response, especially at temperatures of 55°C or more (Ankier, 1974; Magalini *et al.*, 1979). The results indicate no statistical difference in mean latency among the experiments at time zero, 15, 30 and 60 min (ANOVA: $F_{0.05(1)3,140} = 0.956$; p>0,05; Table 2) and no interaction of the experiments with drugs (including control) affecting latency means ($F_{0.05(1)12,140} = 0.735$, p>0.05). These results indicate homogeneity in the mean latency of control, morphine, and extract groups in all four experiments, but the most important general finding was the significant differences among drugs (including control), independently of time (ANOVA: $F_{0.05(1)4,140} = 27.8$; p<0.0005). The accentuated significance of this result may be due primarily to the morphine effect, but we were particularly interested in verifying the contribution of the extract to the significance of the variance and which dose affected the result. As no significant differences were found among experiments, the grand mean of each extract dose was compared to the grand mean of the control. The results indicate that all doses of the extract were significantly different from control, with an increase of 39.8% (AE100), 30.7% (AE200) and 32.8% (AE400) in latency of the response to the administration of the extract. (Tukey: AE100, AE200, and AE400 vs. control group, respectively: q = 6.74; p<0.05; q = 4.51; p<0.05; q = 4.9; p<0.05; Table 2). This response suggests that, like morphine, the aqueous extract interferes with the central pain induced mechanism, reducing its nociceptive response to thermal stimuli. The aqueous extract of *B. cheilantha* altered the paw licking time significantly in both phases of the test (Kruskal-Wallis: F = 15.3; p<0.0005; F = 13.7; p<0.0005; respectively). In the first phase, AE100 reduced paw licking time significantly (Nemenyi: q = 4.1; p<0.05). In the second phase, all doses inhibited the formalin effect (Nemenyi: q = 5.3; p<0.05; q = 4.2; p<0.05; q = 4.2; p<0.05; q = 4.2; p<0.05). Table 3 shows the percentage inhibition of the pain reaction produced by morphine and the plant's aqueous extract. Naloxone, a non-selective opioid receptor antagonist, was used to elucidate the possible mechanisms of the *B. cheilantha* extract (Magalini *et al.*, 1979). In the first phase, Kruskal-Wallis revealed no significant differences among the following groups: control, morphine plus naloxone, and AE100 plus naloxone (Kruskal-Wallis: F = 2.2; p>0.10, Table 4), which suggests that the effect of the aqueous extract may involve an opioid system. However, when comparing the control, AE100, and AE100 plus caffeine groups, significant differences were found in both phases of the test (Kruskal-Wallis: F = 13.2; Table 1. Effects of control, AE100, AE200, and AE400, indomethacin (10 mg/kg), and morphine (2.5 mg/kg) on the frequency of writhing induced by acetic acid 0.6%. | Group | Dose (mg/kg) | Median | % | |--------------|--------------|--------|------| | Control | - | 27 | - | | Morphine | 2.5 | 3* | 69.2 | | Indomethacin | 10 | 2* | 79.8 | | AE | 100 | 18 | 17.2 | | AE | 200 | 14 | 41.9 | | AE | 400 | 6* | 54.4 | n = 9 Table 2. Effects of B. cheilantha aqueous extract (AE) and morphine on latency time in the hot plate test. | Groups | Dose | Latency time (Mean±SEM) | | | | Grand | % | |----------|---------|-------------------------|------------------|------------------|------------------|--------|------| | Groups | (mg/kg) | 0 min | 15 min | 30 min | 60 min | Mean | , 70 | | Control | - | 13.11±1.02 | 13.25±1.29 | 9.55±1.15 | 8.73±1.33 | 11.16 | - | | Morphine | 5 | 29.09 ± 0.91 | 25.66 ± 2.17 | 27.52 ± 1.26 | 25.59 ± 1.83 | 26.96* | 58.6 | | ΑE | 100 | 18.45 ± 2.22 | 14.93 ± 1.67 | 19.83 ± 2.88 | 20.92 ± 2.66 | 18.53* | 39.8 | | ΑE | 200 | 15.78 ± 1.56 | 14.71 ± 2.51 | 17.5 ± 2.70 | 16.4 ± 2.57 | 16.1* | 30.7 | | ΑE | 400 | 18.45 ± 1.92 | 14.87 ± 1.56 | 16.38 ± 2.3 | 16.75 ± 2.31 | 16.61* | 32.8 | n = 9 for each group at each time interval. ^{*} p<0.05 compared to control, Nemenyi test after Kruskal-Wallis. ^{% =} percentage of writhes inhibition scores. ^{*} p<0,05, compared to control, Tukey test after two way ANOVA. ^{%,} percentage of latency time increase. SEM, standard error of the mean. p<0.0005; F = 82.7; p<0.0005, respectively). In the first phase, caffeine reverted the AE effect (Nemenyi: q , = 1.8; p>0.05; Table 5), which indicates participation of the adenosine system in the analgesic effect. Adenosine may interact with four subtypes of receptors (A , A , A and A), but, as caffeine is a non-selective antagonist, further studies will be necessary to determine how these subtypes are involved in the response. In order to evaluate the acute toxicity of *B. cheilantha*, the mice were submmited to increasing doses of the extract. No deaths ocurred, even at the highest dose (3 mg/kg), indicating low toxicity, as reported by Lorke (1993). Table 3. Effect of *B. cheilantha* aqueous extract (AE, 100, 200, and 400 mg/kg) and morphine (7.5 mg/kg) in the 1% formalin test. | Groups | Dogo (ma/lsa) | 1st ph | ase | 2 nd phase | | |----------|---------------|--------|------|-----------------------|------| | Groups | Dose (mg/kg) | Median | % | Median | % | | Control | - | 35 | - | 21 | - | | Morphine | 7.5 | 10* | 77.4 | 0* | 64.0 | | AE | 100 | 20* | 53.9 | 0* | 57.4 | | AE | 200 | 24 | 17.9 | 0* | 46.1 | | AE | 400 | 29 | -3.7 | 0* | 46.2 | n = 9 for each group at each time interval Table 4. Effect of naloxone (5 mg/kg, i.p.) on morphine (10 mg/kg, p.o.) and AE100 in the formalin test. | Contract of the th | 1 st ph | ase | 2 nd phase | | | |--|---------|-------|-----------------------|------|--| | Groups | Median | % | Median | % | | | Control | 54.5 | - | 29.5 | - | | | Morphine +
Naloxone | 55.5 | -10.9 | 18 | 21.2 | | | AE100 +
Naloxone | 47.5 | 38.2 | 0* | 73.3 | | n = 8 for each group at each tim e interval. Table 5. Effects of caffeine on AE100 in the formalin test. | Groups | 1 st ph | ase | 2 nd phase | | | |---------------------|---------|------|-----------------------|------|--| | | Median | % | Median | % | | | Control | 53.5 | - | 27.0 | - | | | AE100 | 23.5* | 68.7 | 0.0* | 56.1 | | | AE100 +
Caffeine | 37.0 | 25.1 | 0.0* | 61.0 | | n = 8 for each group at each time interval. ^{*} p<0.05 compared to control, Nemenyi test after Kruskal-Wallis. ^{% =} inhibition percentage of pain reaction scores. ^{*}p<0.05 compared to control, Nemenyi test after Kruskal-Wallis . ^{% =} inhibition percentage of pain reaction scores ^{*}p<0.05 compared to control, Nemenyi test after Kruskal-Wallis. ^{% =} inhibition percentage of pain reaction scores. Biol. Geral Exper. 5 (2)10-15, 2005 #### REFERENCES - Abreu, M., A. Castillo, A. Rodriguez, I. Gonzalez, N. Rodriguez & D. Pinon, 1990. Effect of the ingestion of an extract from Bauhinia monandra seeds on rats. *Nahrung* 34(8):689-693. - Abreu Penate, M., A. Bencomo Hernandez, E. Sampere Diaz, I. Farras Fernandez, M. Hernandez Triana, C. Porrata Maury & I. Ponce de Leon Boloy, 1988. Nutritional evaluation of the seeds of "ipil-ipil" (Leucaena leucocephala), "casco de vaca" (Bauhinia monandra) and scented carob (Albizia lebbeck). *Arch Latinoam Nutr* 38(4):956-964. - Allen, H.J., E.A. Johnson & K.L. Matta, 1980. Binding-site specificity of lectins from Bauhinia purpurea alba, Sophora japonica, and Wistaria floribunda. *Carbohydr Res* 86(1):123-131. - Ankier, S.I., 1974. New hot plate tests to quantify antinociceptive and narcotic antagonist activities. *Eur J Pharm* 27:1-4. - Braca, A., N. De Tommasi, L. Di Bari, C. Pizza, M. Politi & I. Morelli, 2001. Antioxidant principles from Bauhinia tarapotensis. J Nat Prod 64(7):892-895. - Chernov, H.I., D.E. Wilson, W.F. Fowler & A.J. Plummer, 1967. Non-specificity of the mouse writhing test. Arch Int Pharmacodyn Ther 167:171-175. - Dubuisson, D.& S.G. Dennis, 1977. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. *Pain* 4(2):161-174. - Eddy, N.B.& D. Leimbach, 1953. Synthetic analgesics II. Diethienylbutenyl and dithienylbutylamines. *J Pharmacol Exp Therap* 107:385-393. - Hendershot, L.C.& J. Forsaith, 1959. Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and nonanalgesics. J Pharmacol Exp Ther 125:237-240. - Hunskaar, S., O.G. Berge & K. Hole, 1986. A modified hotplate test sensitive to mild analgesics. *Behav Brain Res* - 21:101-108. - Kittakoop, P., K. Kirtikara, M. Tanticharoen & Y. Thebtaranonth, 2000. Antimalarial preracemosols A and B, possible biogenetic precursors of racemosol from Bauhinia malabarica Roxb. *Phytochemistry* 55(4):349-352. - Koster, R., N. Anderson & E.J. Debber, 1959. Acetic acid for analgesic screening. *Fed Proc* 18:412-412. - Lemus, I., R. Garcia, E. Delvillar & G. Knop, 1999. Hypoglycaemic activity of four plants used in Chilean popular medicine. *Phytother Res* 13(2):91-94. - Lima, A.D., 1989. **Plantas das Caatingas**. Academia Brasileira de Ciências.1 ed. Rio de Janeiro. - Lorke, D., 1993. A new approach to practical acute toxicity testing. *Arch Toxicol* 54:275-287. - Loux, J.J., S. Smith & H. Salem, 1978. Comparative analgesic testing of various compounds in mice using writhing techniques. *Arzneim Forsch* 28:1644-1647. - Magalini, S.I., E. Scrascia & G. de Francisci, 1979. A simple antagonist in acute opioid poisoning: naloxone. *Minerva Anestesiol* 45(1-2):71-75. - Panda, S.& A. Kar, 1999. Withania somnifera and Bauhinia purpurea in the regulation of circulating thyroid hormone concentrations in female mice. *J Ethnopharmacol* 67(2):233-239. - Pearl, J., M.D. Aceto, & L.S. Harris, 1968. Prevention of writhing and other effects of narcotics and narcotic antagonists in mice. *J Pharmacol Exp Ther* 160:217-221. - Pepato, M.T., E.H. Keller, A.M. Baviera, I.C. Kettelhut, R.C. Vendramini & I.L. Brunetti, 2002. Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats. *J Ethnopharmacol* 81(2):191-197. - Silva, K.L.& V.C. Filho, 2002. Plants of the genus *Bauhinia*: chemical composition and pharmacological potential. *Quim Nova* 25(3):449-452. - Zar, J.H., 1996. Bioestatistical Analysis. Prentice-Hall.3rd ed. New Jersey. Aceito: 14.vii.2005 # Biologia Geral e Experimental ## Universidade Federal de Sergipe São Cristóvão, SE 5 (2): 16-24 30.vii.2005 # ELECTROPHYSIOLOGICAL EFFECTS OF SODIUM THIOPENTAL ON THE RIGHT ATRIUM OF THE RABBIT (ORYCTOLAGUS CUNICULUS) Eduardo Antônio Conde-Garcia¹ Marilene de Paula-Carvalho¹ Antonio Edilson Nascimento¹ Vanda Rodrigues de Oliveira¹ Marcli Costa da Silveira Libório¹ #### ABSTRACT This study describes the effects of sodium thiopental (40 mg/l) on the rabbit atrium. The electrical endocardial signals and the intracellular action potentials were recorded. The results revealed a reduction in the atrial impulse velocity (from 75 ± 3 cm/sec to 63 ± 7 cm/sec), disorganization of the propagated electrical front wave, reduction of the spontaneous atrial pacemaker rate, depolarization of atrial cells (quiescent: 3.46 ± 1.2 mV; under electrical stimulation: 3.1 ± 0.5 mV), and an increase of the atrial cellular refractory period (from 52 ± 5 msec to 117 ± 8 msec). Atropine sulfate (1 mg/l) did not prevent or abolished the bradicardia produced by the sodium thiopental. Keywords: Electrocardiophisiology, action potentials, atrial cells, sodium thiopental. ### RESUMO O estudo descreve os efeitos do tiopental sódico (40 mg/l) sobre átrios de coelho. Foram registrados os sinais elétricos endocárdicos e os potenciais de ação intracelulares. Os resultados mostraram redução da velocidade de propagação do impulso atrial (75 \pm 3 cm/sec a 63 \pm 7 cm/sec), desorganização da frente de onda propagada, redução da freqüência espontânea do marcapasso atrial, despolarização de células atriais mantidas em repouso (3.46 \pm 1.2 mV) ou sob estimulação elétrica (3.1 \pm 0.5 mV), e aumento do período refratário das células atriais (52 \pm 5 msec a 117 \pm 8 msec). O sulfato de atropina (1 mg/l) não preveniu ou aboliu a bradicardia produzida pelo tiopental sódico. Palavras-chave: eletrocardiofisiologia, potencial de ação, células atriais, tiopental sódico. #### INTRODUCTION Sodium thiopental (NaTHIO) is a well-known barbiturate. Its rapid hypnotic properties derive from its effective liposolubility, a property due to the presence of a sulfur atom substituting an oxygen atom in the ureic residue of the barbiturate ring. At blood concentrations of up to 16 mg/ml, conscience is lost quickly (Evers & Crowder, 2001). Patients of normal body weight who receive small doses of NaTHIO normally wake up around 5 to 10 minutes later. Rapid recovery occurs as a consequence of the redistribution of NaTHIO among different tissues and organs, mainly those with high blood flow demands. In plasma, 85% of NaTHIO is bound to albumin molecules and, as a consequence, patients with severe hypoalbuminemia may need less NaTHIO to lose consciousness during anesthetic procedures. Becker & Tonnesen (1978) reported some cardiovascular effects produced by NaTHIO in patients anesthetized exclusively by this drug. These effects included an increase in heart rate during the induction phase, a decrease in systolic blood pressure, and an increase of the ventricular pre-ejection period. Since Beattie *et al.* (1930) showed that chloroform facilitates the appearance of ventricular fibrillation, the ¹ Departamento de Fisiologia, Laboratório de Biofísica do Coração. Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Se, 49100-000. egarcia@ufs.br